sábado, 24 de mayo de 2014

Fibra Opticas (mas cosas que hay que saber de ella)


La fibra óptica es una delgada hebra de vidrio o silicio fundido que conduce la luz. Se requieren dos filamentos para una comunicación bi-direccional: TX y RX.
El grosor del filamento es comparable al grosor de un cabello humano, es decir, aproximadamente de 0,1 mm. En cada filamento de fibra óptica podemos apreciar 3 componentes:
La fuente de luz: LED o laser.
el medio transmisor : fibra óptica.
el detector de luz: fotodiodo.
Un cable de fibra óptica está compuesto por: Núcleo, manto,recubrimiento, tensores y chaqueta.
Las fibras ópticas se pueden utilizar con LAN, así como para transmisión de largo alcance, aunque derivar en ella es más complicado que conectarse a una Ethernet. La interfaz en cada computadora pasa la corriente de pulsos de luz hacia el siguiente enlace y también sirve como unión T para que la computadora pueda enviar y recibir mensajes.
Convencionalmente, un pulso de luz indica un bit 1 y la ausencia de luz indica un bit 0. El detector genera un pulso eléctrico cuando la luz incide en él. Éste sistema de transmisión tendría fugas de luz y sería inútil en la práctica excepto por un principio interesante de la física. Cuando un rayo de luz pasa de un medio a otro, el rayo se refracta (se dobla) entre las fronteras de los medios.
El grado de refracción depende de las propiedades de los dos medios (en particular, de sus índices de refracción). Para ángulos de incidencia por encima de cierto valor crítico, la luz se refracta de regreso; ninguna función escapa hacia el otro medio, de esta forma el rayo queda atrapado dentro de la fibra y se puede propagar por muchos kilómetros virtualmente sin pérdidas. En la siguiente animación puede verse la secuencia de transmisión



Ejercicios 7.2 y 7.3



Fibra Optica Video


Fibra optica


Video de Fibra Optica

Introducción
El primer intento de utilizar la luz como soporte para una transmisión fue realizado por Alexander Graham Bell, en el año 1880. Utilizó un haz de luz para llevar información, pero se evidenció que la transmisión de las ondas de luz por la atmósfera de la tierra no es práctica debido a que el vapor de agua, oxigeno y partículas en el aire absorben y atenúan las señales en las frecuencias de luz. 
Se ha buscado entonces la forma de transmitir usando una línea de transmisión de alta confiabilidad que no reciba perturbaciones desde el exterior, una guía de fibra llamada Fibra óptica la cual transmite información lumínica. 
La fibra óptica puede decirse que fue obtenida en 1951, con una atenuación de 1000 dB/Km. (al incrementar la distancia 3 metros la potencia de luz disminuía ½), estas perdidas restringía, las transmisiones ópticas a distancias cortas. En 1970, la compañía de CORNING GLASS de Estados Unidos fabricó un prototipo de fibra óptica de baja perdida, con 20 dB/Km. Luego se consiguieron fibras de 7 dB/Km. (1972), 2.5 dB/Km. (1973), 0.47 dB/Km. (1976), 0.2 dB/Km. (1979). Por tanto a finales de los años 70 y a principios de los 80, el avance tecnológico en la fabricación de cables ópticos y el desarrollo de fuentes de luz y detectores, abrieron la puerta al desarrollo de sistemas de comunicación de fibra óptica de alta calidad, alta capacidad y eficiencia. Este desarrollo se vio apoyado por diodos emisores de luz LEDs, Fotodiodos y LASER (amplificación de luz por emisión estimulada de radiación). 
La Fibra Óptica es una varilla delgada y flexible de vidrio u otro material transparente con un índice de refracción alto, constituida de material dieléctrico (material que no tiene conductividad como vidrio o plástico), es capaz de concentrar, guiar y transmitir la luz con muy pocas pérdidas incluso cuando esté curvada. Está formada por dos cilindros concéntricos, el interior llamado núcleo (se construye de elevadísima pureza con el propósito de obtener una mínima atenuación) y el exterior llamado revestimiento que cubre el contorno (se construye con requisitos menos rigurosos), ambos tienen diferente índice de refracción ( n2 del revestimiento es de 0.2 a 0.3 % inferior al del núcleo n1 ). 
El diámetro exterior del revestimiento es de 0.1 mm . aproximadamente y el diámetro del núcleo que transmite la luz es próximo a 10 ó 50 micrómetros. Adicionalmente incluye una cubierta externa adecuada para cada uso llamado recubrimiento. 
Ventajas de la tecnología de la fibra óptica
Baja Atenuación
Las fibras ópticas son el medio físico con menor atenuación. Por lo tanto se pueden establecer enlaces directos sin repetidores, de 100 a 200 Km . con el consiguiente aumento de la fiabilidad y economía en los equipamientos. 
Gran ancho de banda
La capacidad de transmisión es muy elevada, además pueden propagarse simultáneamente ondas ópticas de varias longitudes de onda que se traduce en un mayor rendimiento de los sistemas. De hecho 2 fibras ópticas serían capaces de transportar, todas las conversaciones telefónicas de un país, con equipos de transmisión capaces de manejar tal cantidad de información (entre 100 MHz/Km a 10 GHz/Km).
Peso y tamaño reducidos
El diámetro de una fibra óptica es similar al de un cabello humano. Un cable de 64 fibras ópticas, tiene un diámetro total de 15 a 20 mm . y un peso medio de 250 Kg/km. Si comparamos estos valores con los de un cable de 900 pares calibre 0.4 (peso 4,000 Kg/Km y diámetro 40 a 50 mm ) se observan ventajas de facilidad y costo de instalación, siendo ventajoso su uso en sistemas de ductos congestionados, cuartos de computadoras o el interior de aviones. 
Gran flexibilidad y recursos disponibles
Los cables de fibra óptica se pueden construir totalmente con materiales dieléctricos, la materia prima utilizada en la fabricación es el dióxido de silicio (Si0 2 ) que es uno de los recursos más abundantes en la superficie terrestre. 
Aislamiento eléctrico entre terminales
Al no existir componentes metálicos (conductores de electricidad) no se producen inducciones de corriente en el cable, por tanto pueden ser instalados en lugares donde existen peligros de cortes eléctricos. 
Ausencia de radiación emitida
Las fibras ópticas transmiten luz y no emiten radiaciones electromagnéticas que puedan interferir con equipos electrónicos, tampoco se ve afectada por radiaciones emitidas por otros medios, por lo tanto constituyen el medio más seguro para transmitir información de muy alta calidad sin degradación. 
Costo y mantenimiento
El costo de los cables de fibra óptica y la tecnología asociada con su instalación ha caído drásticamente en los últimos años. Hoy en día, el costo de construcción de una planta de fibra óptica es comparable con una planta de cobre. Además, los costos de mantenimiento de una planta de fibra óptica son muy inferiores a los de una planta de cobre. Sin embargo si el requerimiento de capacidad de información es bajo la fibra óptica puede ser de mayor costo.
Las señales se pueden transmitir a través de zonas eléctricamente ruidosas con muy bajo índice de error y sin interferencias eléctricas. 
Las características de transmisión son prácticamente inalterables debido a los cambios de temperatura, siendo innecesarios y/o simplificadas la ecualización y compensación de las variaciones en tales propiedades. Se mantiene estable entre -40 y 200 ºC . 
Por tanto dependiendo de los requerimientos de comunicación la fibra óptica puede constituir el mejor sistema.
Desventajas de la fibra óptica
El costo de la fibra sólo se justifica cuando su gran capacidad de ancho de banda y baja atenuación son requeridos. Para bajo ancho de banda puede ser una solución mucho más costosa que el conductor de cobre. 
La fibra óptica no transmite energía eléctrica, esto limita su aplicación donde el terminal de recepción debe ser energizado desde una línea eléctrica. La energía debe proveerse por conductores separados. 
Las moléculas de hidrógeno pueden difundirse en las fibras de silicio y producir cambios en la atenuación. El agua corroe la superficie del vidrio y resulta ser el mecanismo más importante para el envejecimiento de la fibra óptica. 
Incipiente normativa internacional sobre algunos aspectos referentes a los parámetros de los componentes, calidad de la transmisión y pruebas.



CINTA Y MICROCINTA

Línea de transmisión constituida por una cinta conductora y una superficie conductora paralela de anchura muy superior; estos dos conductores son solidarios de las dos caras de un soporte dieléctrico de pequeño espesor.
La líneas de microcintas son ampliamente usadas para interconectar circuitos lógicos de alta velocidad en las computadoras digitales porque estas pueden ser fabricadas por técnicas automatizadas y ello proporciona una señal uniforme en toda la trayectoria.
La impedancia de una línea de microcinta está en función del ancho de la línea de cinta, el espesor de la línea de cinta, la distancia entre la línea y área de tierra, y la constante relativa del dieléctrico del material. Para encontrar la impedancia de una microcinta se relaciona la ecuación de otra línea de trasmisión como es la del alambre sobre tierra (wire over ground), cuya impedancia es,
donde,
  : constante relativa del dieléctrico del medio ambiente.
h : distancia entre el centro del alambre y el área de tierra.
d : diámetro del alambre.
La constante efectiva relativa del dieléctrico para una línea de microcinta puede relacionarse con la constante relativa del dieléctrico del material. DiGiacomo y coayudantes descubrieron una ecuación empírica para la constante efectiva relativa del dieléctrico de la línea de microcinta como medida de propagación del tiempo y la constante relativa del dieléctrico en varios materiales.


donde,
  : constante relativa del dieléctrico del medio ambiente.
 : constante efectiva relativa del dieléctrico de la línea de microcinta.
La sección transversal de la línea de microcinta es rectangular. Debemos transformar los parámetros circulares a su equivalente en rectangular. Springfield descubrió una ecuación empírica para la transformación,

d = 0.67 w (0.8 + t/w)

donde,
d: diámetro de la línea sobre tierra
w : ancho de la línea de microcinta
t : espesor de la línea de microcinta
Sustituyendo la ecuación para la constante del dieléctrico y para la equivalencia del diámetro en la ecuación de la impedancia característica de la línea de alambre sobre tierra, obtenemos

donde,
  : constante relativa del dieléctrico del material.
h : distancia entre el centro del alambre y el área de tierra.
w : ancho de la línea de microcinta
t : espesor de la línea de microcinta
Esta ecuación es para la impedancia característica de una línea angosta de microcinta. La velocidad de propagación es,


La impedancia característica para una línea ancha de microcinta fue derivada por Assadourian y otros, está expresada por


 MICROONDAS TERRESTRES

Un radioenlace terrestre o microondas terrestre provee conectividad entre dos sitios (estaciones terrenas) en línea de vista (Line-of-Sight, LOS) usando equipo de radio con frecuencias de portadora por encima de 1 GHz. La forma de onda emitida puede ser analógica (convencionalmente en FM) o digital.
Las principales aplicaciones de un sistema de microondas terrestre son las siguientes:
·         Telefonía básica (canales telefónicos)
·         Datos
·         Telegrafo/Telex/Facsímile
·         Canales de Televisión.
·         Video
·         Telefonía Celular (entre troncales)
Un sistema de microondas consiste de tres componentes principales: una antena con una corta y flexible guía de onda, una unidad externa de RF (Radio Frecuencia) y una unidad interna de RF. Las principales frecuencias utilizadas en microondas se encuentran alrededor de los 12 GHz, 18 y 23 Ghz, las cuales son capaces de conectar dos localidades entre 1 y 15 millas de distancia una de la otra. El equipo de microondas que opera entre 2 y 6 Ghz puede transmitir a distancias entre 20 y 30 millas.
Las licencias o permisos para operar enlaces de microondas pueden resultar un poco difíciles ya que las autoridades (S.C.T. México, FCC Estados Unidos) deben de asegurarse que ambos enlaces no causen interferencia a los enlaces ya existentes.
El clima y el terreno son los mayores factores a considerar antes de instalar un sistema de microondas. Como por ejemplo, no se recomienda instalar sistemas en lugares donde no llueva mucho; en este caso deben usarse radios con frecuencias bajas (es decir menores a 10 GHz). La consideraciones en terreno incluyen la ausencia de montañas o grandes cuerpos de agua las cuales pueden ocasionar reflecciones de multi-trayectorias.

Acoplador stub simple y doble

Utilizamos el acople de circuito corto, tal que con un ajuste apropiado de la longitud, l del stub y su posición d, a partir de la carga ZL , como se muestra en la figura, existe una manera de acoplarse una línea de baja pérdida a la impedancia producida por la combinación en paralelo del stub y la longitud restante d, de la línea terminada en la carga, ZL ,mal acoplada. A un segmento de línea con bajas pérdidas en corto se le llama Stub (equilibrador). Si se puede variar su longitud usando conductores es un equilibrador ajustable. Los stubs se usan a menudo a altas frecuencias como elementos reactivos en arreglos de acople de impedancia.
Debido a la conexión en paralelo del stub y la línea de transmisión, es ventajoso emplear la forma de admitancia de la Carta de Smith
En este caso se considera la línea y el stub sin pérdidas, y que cada uno tiene la misma admitancia característicaY0. Con una admitancia de carga conocida YL , ZL-1, se puede determinar la admitancia normalizada YL = Y(0) = YL /Y0, lo que da el círculo de SWR pasando por el punto YL. A partir de ahí se obtienen dos puntos:
El primero, moviéndose una distancia (d) hacia el punto generador, tal que se obtiene la intersección con el círculo y = 1. la admitancia de entrada hacia esa longitud d, queda como: y=1+j |b| con b la parte imaginaria de y. El segundo se ubica más adelante, hacia el generador en la intersección de y=1. con la admitancia de línea 1−j |b|. Si en los dos puntos anteriormente descritos se pone en paralelo el stub en corto, se cancela la parte susceptiva ±j |b| de la admitancia de línea, para dar la admitancia en paralelo, y=1, en esos dos puntos, por lo que se obtiene una impedancia acoplada.
Sólo queda determinar la longitud l del stub necesario para proporcionar −j |b| en el primer punto o +j |b| en el segundo. Si el stub se conecta al primer punto, la susceptancia positiva de la admitancia de entrada y=1+j|b| debe quedar anulado por la susceptancia negativa −j |b| del stub en corto de longitud l. Esta longitud se obtiene como la distancia  medida como una rotación hacia el generador partiendo de la susceptancia b –>  en el corto a la susceptancia −|b|.



Problemas 4.1 y 4.2